EFFECT OF JOULE HEAT ON THE DISTRIBUTION
OF ELECTRIC CURRENT IN A CYLINDRICAL CONDUCTOR
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and V. M. Kuznetsov

Analyzed are the thermal conditions in a cylindrical conductor whose electrical conductivity
is temperature-dependent, It is shown that a sufficiently large current is crowded toward
the conductor surface with a change in the heat balance at the surface. The behavior of
cylindrical semiconductors under analogous conditions is also examined,

In this study the authors consider the thermal conditions in a cylindrical conductor heated electrically
with direct current, the case where the electrical resistivity of the material is a function of the tempera-
ture and when the rate of heat transfer at the surface is high,

The equation of heat conduction for an infinitely long cylinder with volume heat sources is

VIMT)VT] W =0. 1)
We calculate W:
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V=
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Here V, = Iy /oy, with oy =1/Ry = 2”(’;)’ . Equation (1) can be written as
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With the Kirchhoff integral analog ¢ = S A(T)dt we reduce the last equation to
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The integrodifferential equation (2) contains an empirical function p(¢). Over a certain interval [0,
1y} of &(r) one may approximate this relation in seyeral different ways. With an exponential relation this
equation will be integrated most easily.

Let

p (D) = p (D)™ P W
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We now introduce the dimensionless variables
Y =a(@—Dy), X=rir, ¥ *}1? Y vt =0, 3)

where v = ,81%01 is the dimensionless closure parameter, Integrating Eq. (3) yields

p e Xe — 1)2X2
Y=In ——pr———. 4
" 2c2X e 4

In order to determine the constants ¢ and ¢;, we use the boundary condition of the first kind T,
= const and the condition that the temperature at the cylinder axis is bounded:

1) for X=1 Y =0,

@)
2) for X=0 Y =0.
These boundary conditions yield ¢ = 2 and
1 4+y, 2V2
CZZ*EQTIZTi ,\7_‘12”7"?.
With ¢ and ¢, inserted into Eq. (¢), we obtain
2
V(X2 : Q‘,V?’ 22,2 Ve -v)
Y=1In — (5)
8(4 L 2V2 1/2"*:5)
v ¥

This is the solution to Eq. (3) with the boundary conditions @*). The uniformity parameter can be deter-

£
mined after the integral (g{(f(fbi)f has been evaluated. The expression for y becomes then
o

[

kI Sp(@wi4 +2V2 V2 yia
- 64n?r2 :

Letting {klzzozp (®w)]/6472rt = 5, we rewrite the last equation in critical form:

Y
@r2 Ve g ©®

Knowing the current Iy and the surface temperature, we can now determine § and y, and in these
terms the most important process characteristics.

The rate of heat transfer at the surface will be determined in the following manner,
The rate of heat generation in the cylinder per unit length is Q = f WdV. After evaluating the inte-
gral, we have v
4y

VT IR

Since Q = 2wry, hence

v w2

4+2Y92 vo+y 2 ary
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Here

- v . 7
" 4+2V2 V2ty @

Essential Process Characteristics

1. Temperature Tp,ax OF $ a5 at the axis:

41-y+2V2 v 21y
8

1
cDmax = ch'+ = In .
The formula for ¢, must be used here with the + sign, because otherwise &max < &y for real values of
v and this would contradict the condition of heat transfer,

1 4Ly +2V2 V2~
Dpay = Dy + — In 7T ‘8/ V2w

2. Current crowding:

i) oDy |
3. Resistance of cylinder per unit length:

j() _ o@pay) _ AFy+2V2V2y (9)
. = 3 :

D4 +£2vV2 V2+7)
8qr2 )

Ry= p(

(10)

Calculations can be made with the aid of graphs shown in Fig. 1a, b.. The curves in Fig. 1b corre-.
spond to materials with a positive temperature coefficient of resistance, the curves in Fig. 1a correspond
to a negative temperature coefficient, The coefficient o as a function of the surface temperature is shown
in Fig, 2 for various metals.

With known geometrical and thermophysical characteristics, one assumes the current 122 and the
surface temperature, whereupon the rate of heat transfer at the surface is found from (7), v is found from
(6), and the process characteristics are found from (8)-(10).

On the basis of the solution obtained here, one can draw the following conclusions:

1. In cylindrical metal or alloy conductors with a positive temperature coefficient of resistance the
current which heats the conductor is crowded toward the surface and, as a result, the radial tem-
perature gradient grad T decreases somewhat, The crowding factor is a function of I2,, Ty, AT,
Tw, *, and other variables. For pure metals o is of the order of §.5%/deg and ) varies from
360 kcal/m-h-deg for copper to 8 kcal/m -h-deg for bismuth [1]. Therefore, the crowding fac-
tor may be up to 5% for filaments in heater lamps or cathodes in electron tubes but 50% or higher
for bismuth conductors.

2. If 6 =1/8, then the closure coefficient y tends toward infinity, This means a breakdown of the
conductor, which now carries current only along the surface. In practice, however, melting of
the conductor material at some finite value of y will prevent this condition from occurring,

3. In cylindrical conductors of material with a negative temperature coefficient of resistance ar
(metal oxides, PbSe alloy, etc. [3]) the current is crowded inward and this results in a higher
radial temperature gradient grad T, i.e., in a larger crowding factor. Under certain conditions
our solution bcomes imaginary and, therefore, absurd. This happens when y < —2. The process
in a cylinder with v < —2 requires further study. Since the absolute value of @ is much higher
for metal oxides than for metals, while ) is much lower and decreases further with rising tem-
perature [3, 4, 10-13], hence v = -2 is certainly attainable and this value of v corresponds to a
crowding factor j(0)/3j(1) =4. Thus, for example, the thermistor resistance can change by a fac-
tor of a few hundred [10], i.e., the crowding factor can be of the same order of magnitude under
certain conditions of electric loading and heat transfer,

The crowding factor for modern KMT-1 thermistors is as high as 30-509, at the maximum power dis-
sipation in air [3, 4].
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Fig. 1. a) Negative temperature coefficients and b) positive tem-
perature coefficients: 1) h{y); 2) 6¢y); 3) k(y) = [§1)-11/j(0).

o - Dul'nev [5] has recognized the variation of elec-
4‘< Fj : trical conductivity ¢ along a cylinder radius, but he
N —1_ 7 disregarded this variation and assumed there ¢ = const(r)
~— so as not to make the solution of the problem too un-
z P P wieldy. It is of considerable practical interest, in solv-
i e A ing various application problems on the subject of heat
0 o0 200 300 400 T transfer, to compare the mean volume temperature cal-

culated with the assumption of A = const, W = const, or
tion of the wall temperature T ¢C): 1) cop- A = AMT), W =W(T) and boundary conditions of the first

per 105¢; 2) platinum 105«; 3) tungsten 1800- kind.
2800°C, 105¢; 4) bismuth 104, Example 1,

*
T:T0[1+%-(1~X2)],

Fig. 2. Coefficient o (m-h/kcal) as a func-

where v * = kI2p;/r3n2AT, is the closure parameter. The mean-over-thé-section temperature of the con-
ductor is

‘o
n

T,

mean” j
6

2nrTdr,

or

To=To| 1+ X

mean— 0[ + *4—] ‘
T .

Considering that A = const and & = f AdT = AT, one can write
0

s
q)mean': ‘Do [ 1+ TJ . (11)

Example 2,
1

r ¢ ,
Priean™ 773 5 2ur®ddr or mean:f Dd (X2,
0 0

and, considering that

2 .
(p:cpo_'r_,l__my_()_(_v_),
o 8v
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where

vt 2‘;2 Vity, (12)

we obtain

® pean= ®0+i[2v In — —1].
o v—1
It can be shown that, as the electric loading is decreased down to zero, expressions (11) and (12) con-
verge to the same result: ;. The mean temperatures calculated by these two formulas can be compared
only in specific cases. '

A preliminary estimate has shown that &,,05, calculated according to (12) is somewhat smaller than
®mnean calculated according to (11) and that the difference increases with increasing vy and o.

NOTATION

A is the thermal conductivity;

T is the temperature;

v is the operator in cylindrical coordinates;

V' is the rate of Joule heat generated in cylinder volume per unit length;
V, is the voltage drop along cylinder, per unit length;

p(T) is the temperature-dependent electrical resistivity of the material;
I»  is the total electric current across cylinder section;

&y 1is the Kirchhoff analog;

o is the coefficient of approximation for the resistivity function;

is the total electrical conductivity of cylinder, per unit length;

q is the thermal flux density.
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